Dantzig selector homotopy with dynamic measurements

نویسندگان

  • Muhammad Salman Asif
  • Justin K. Romberg
چکیده

The Dantzig selector is a near ideal estimator for recovery of sparse signals from linear measurements in the presence of noise. It is a convex optimization problem which can be recast into a linear program (LP) for real data, and solved using some LP solver. In this paper we present an alternative approach to solve the Dantzig selector which we call “Primal Dual pursuit” or “PD pursuit”. It is a homotopy continuation based algorithm, which iteratively computes the solution of Dantzig selector for a series of relaxed problems. At each step the previous solution is updated using the optimality conditions defined by the Dantzig selector. We will also discuss an extension of PD pursuit which can quickly update the solution for Dantzig selector when new measurements are added to the system. We will present the derivation and working details of these algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DASSO: Connections Between the Dantzig Selector and Lasso

We propose a new algorithm, DASSO, for fitting the entire coefficient path of the Dantzig selector with a similar computational cost to the LARS algorithm that is used to compute the Lasso. DASSO efficiently constructs a piecewise linear path through a sequential simplex-like algorithm, which is remarkably similar to LARS. Comparison of the two algorithms sheds new light on the question of how ...

متن کامل

The Double Dantzig

The Dantzig selector (Candes and Tao, 2007) is a new approach that has been proposed for performing variable selection and model fitting on linear regression models. It uses an L1 penalty to shrink the regression coefficients towards zero, in a similar fashion to the Lasso. While both the Lasso and Dantzig selector potentially do a good job of selecting the correct variables, several researcher...

متن کامل

Near-Oracle Performance of Basis Pursuit under Random Noise

We consider the problem of estimating a deterministic sparse vector x0 from underdetermined noisy measurements, in which the noise is a Gaussian random vector. Two techniques which are commonly used in this setting are the Dantzig selector and basis pursuit denoising (BPDN). It has previously been shown that, with high probability, the Dantzig selector comes close to the performance of the orac...

متن کامل

Parallelism, uniqueness, and large-sample asymptotics for the Dantzig selector.

The Dantzig selector (Candès and Tao, 2007) is a popular ℓ1-regularization method for variable selection and estimation in linear regression. We present a very weak geometric condition on the observed predictors which is related to parallelism and, when satisfied, ensures the uniqueness of Dantzig selector estimators. The condition holds with probability 1, if the predictors are drawn from a co...

متن کامل

Multi-Stage Dantzig Selector

We consider the following sparse signal recovery (or feature selection) problem: given a design matrix X ∈ Rn×m (m À n) and a noisy observation vector y ∈ R satisfying y = Xβ∗ + 2 where 2 is the noise vector following a Gaussian distribution N(0, σI), how to recover the signal (or parameter vector) β∗ when the signal is sparse? The Dantzig selector has been proposed for sparse signal recovery w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009